
Laboratory 1
Electronics Engineering 3210

Introduction to MATLAB

Purpose:
In this lab, students will be introduced to the some of the capabilities of MATLAB. As
an exercise, students will convolve two discrete time signals, first using nested loops,
then using the built-in MATLAB functions. Students are encouraged, however, to try
different things and analyze the outcomes to expand their learning beyond the basic
requirements of this laboratory exercise.

Preliminary:
Matlab has three user interfaces that can be used:

1. The Command Line is similar to a calculator in which commands may be
entered. All commands will display the answer unless the “echo” feature is
disabled by concluding the command with a semi-colon “;”

2. The Editor can be opened by typing edit at the command line. Using the editor,
a sequence of commands may be entered and saved in a file and then run as a
program (or script) in the command line. The file name should be 7 characters
or less, not contain any special characters, and end with a “.m” extension.

3. Simulink is a graphical interface in which information (signals) are passed
through commands (blocks) to yield the desired results.

In this lab, we will use only the command line and the editor. (It is recommended that
you use the editor for this laboratory exercise – it will save a lot of typing).

It should be noted that MATLAB (like other computational software packages) is
extremely powerful and provides many language features, specialized functions and
subroutines. In MATLAB if you are unsure what a command does, type >> help
{command} at the command line. If you are unsure what command to use type >>
help and a list of command groups will appear. Enter >> help {command group}
and a list of commands that behave similarly will appear. There is also a graphic user
interface for this help environment that can be accessed via the icon in the lower left
corner of the MATLAB window.

Also keep in mind as you write MATLAB scripts that the more complex your problem
becomes the more important comments and documentation become. Comments can
be added to MATLAB commands by typing “%” and following it with any comment
text you wish.

Remember that MATLAB IS NOT A THINKING ENTITY. IT WILL ONLY DO
EXACTLY WHAT YOU TELL IT, NOT WHAT YOU WANT IT TO DO, which in
many cases are two different things.

MATLAB is also designed to echo every answer to the command line. Users may
turn the echo feature off by following the command with a semi-colon.

Procedure:
1. Define a vector t that includes values from 0 to 4π in 0.1 increments.

>> t = [0:0.1:4*pi]

Individual values of a vector can be accessed with parentheses, i.e. t(1), t(2), …
In MATLAB, all matrix and vector indices start with 1.

2. Use a for loop to individually calculate x(t) = sin (0.5 t) and store the result in a
vector. (Type “>>help for” in the command line for more information on the
for loop.)

NOTE: MATLAB statements act on vectors or matrices; scalars are just 1x1
matrices. So this step could have been accomplished simply by taking the sine of a
scaled vector, i.e. x = sin(0.5*t). But write the code using a loop anyway.

3. Using plot, graph x(t) and label all axis and attach a title. (Try plot(t,x), then

use title(), xlabel() and ylabel(). Use the help command to learn how to use these
MATLAB functions. Try, for example, to plot the function in a color other than
blue.) Also note that MATLAB accepts TEX type set commands for displaying
symbols, e.g. \pi, \epsilon, \mu)

4. Consider a system whose impulse response is h(t) = u(t-1) – u(t-3). Write MATLAB

code to create a vector for h(t) using the same time scale (0.1) as you used for x. The
data point corresponding to 1.0 and 3.0 should be 0.5 and the data points in between
should be 1.0. Hint: a vector can be defined with square brackets surrounding
comma-separated elements or vectors, and the functions zeros() and ones() create
vectors. As an example, see what you get if you type:
 >>y = [zeros(1,9),0.5,1.0,0.5]

5. Write a MATLAB program that will convolve y(t) = h(t) * x(t) and graph the results.

6. Use the built-in MATLAB function conv to repeat part 5.

7. Write a title and short description in your lab book. Attach your MATLAB script

and the plotted results x(t), h(t) and h(t)*x(t).

8. Write a summary in your lab book. Compare the results of your convolution

program with the MATLAB conv subroutine. Also include any additional lessons
learned and any topics/commands that may be helpful in future MATLAB based
labs.

